虽然之前已经学习了ElasticSearch的使用,但是依然有一些elasticsearch的高级搜索功能等待大家探索。我们今天就会挑选几个比较常用的来学习。
详细文档我们可以参考官方文档:
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/index.html
1.0.安装Elasticsearch
建议所有同学使用我提供的镜像从新安装elasticsearch,我的版本是7.4.2
参考课前资料文档:
1.1.特殊数据类型
在之前的学习中,我们了解了Elasticsearch的基本数据类型,今天我们来看看ES中提供的特殊数据类型:
1.1.1.Object类型
相关文档:https://www.elastic.co/guide/en/elasticsearch/reference/7.6/object.html
当我们向ES中存入JSON数据时,大多数情况下,数据都是简单JSON类型,例如:
1 2 3 4 5 6
| PUT my_index/_doc/1 { "region": "US", "age": 30, "name": "John Smith" }
|
这样,写入ES的文档就包含3个字段,分别是:region、age、name
但是,如果我们存入ES的数据比较复杂,包含对象,例如:
1 2 3 4 5 6 7 8 9
| PUT my_index/_doc/1 { "region": "US", "age": 30, "name": { "first": "John", "last": "Smith" } }
|
此时,写入ES的文档包含3个字段:
- region:普通字符串
- age:普通数字
- name:是一个内部嵌套的对象,包含两个属性:
因为Lucene是不支持对象数据的,因此ES会将数据扁平化处理,变成这样:
1 2 3 4 5 6
| { "region": "US", "age": 30, "name.first": "John", "name.last": "Smith" }
|
此时,文档的映射类型(mapping)大概是这样的:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| PUT my_index { "mappings": { "properties": { "region": {"type": "keyword"}, "age": {"type": "integer" }, "name": { "properties": { "first": { "type": "text" }, "last": { "type": "text" } } } } } }
|
此时,如果我们要根据名称做match搜索,我们需要这样:
1 2 3 4 5 6 7 8
| GET /my_index/_search { "query": { "match": { "name.first": "John" } } }
|
1.1.2.nested类型
Nested类型其实是Object类型的一种特殊版本,它允许包含一组属性相似Object的数组中的每个对象,可以被独立的搜索,互不影响。
文档地址:https://www.elastic.co/guide/en/elasticsearch/reference/7.6/nested.html
1)Object数组的问题
我们先来看一个文档数据:
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| PUT my_index/_doc/1 { "group" : "fans", "user" : [ { "first" : "张", "last" : "学有" }, { "first" : "刘", "last" : "德华" } ] }
|
因为user是一个数组,而数组中是Object类型,因此此时Use会被认定为Object类型,然后会被展开,处理成这样:
1 2 3 4 5
| { "group" : "fans", "user.first" : [ "张", "刘" ], "user.last" : [ "学有", "德华" ] }
|
此时,user.first和user.last被处理成两个数组类型的字段,因此名字Alice
和Smith之间的关联就丢失了。
当你搜索张德华
时,也能搜索到数据,这显然是不对的。
我们试试:
1 2 3 4 5 6 7 8 9 10 11
| GET my_index/_search { "query": { "bool": { "must": [ { "match": { "user.first": "张" }}, { "match": { "user.last": "德华" }} ] } } }
|
这个搜索时要搜first名称为张,last名称为德华的人,是不存在的,但是结果却搜索到了:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
| { "took" : 22, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 0.8630463, "hits" : [ { "_index" : "my_index", "_type" : "_doc", "_id" : "1", "_score" : 0.8630463, "_source" : { "group" : "fans", "user" : [ { "first" : "张", "last" : "学有" }, { "first" : "刘", "last" : "德华" } ] } } ] } }
|
2)Nested解决Object数组问题
如果你想要使用对象数组格式,同时又想保持数组中每个Object的独立性。那么你应该使用nested类型。nested类型会把数组中的每个object用隐式的独立Document来保存,因此可以互不干扰的查询,但必须用nested方式查询。
首先,我们设置一个nested类型的字段:
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| PUT my_index { "mappings": { "properties": { "user": { "type": "nested", "properties": { "first":{"type":"keyword"}, "last":{"type":"keyword"} } } } } }
|
然后,再次填充数据:
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| PUT my_index/_doc/1 { "group" : "fans", "user" : [ { "first" : "张", "last" : "学有" }, { "first" : "刘", "last" : "德华" } ] }
|
搜索的时候,必须使用nested搜索,并制定对象的名称:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| GET my_index/_search { "query": { "nested": { "path": "user", "query": { "bool": { "must": [ { "match": { "user.first": "刘" } }, { "match": { "user.last": "德华" } } ] } } } } }
|
语法说明:
这次就搜索不到数据了,因为没有名为Alice Smith
的人。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| { "took" : 0, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 0, "relation" : "eq" }, "max_score" : null, "hits" : [ ] } }
|
1.2.自动补全和提示
ES的推荐功能(Suggester)包含三种不同方式,不过用的最多的,还是Completion模式,实现自动补全和基于上下文的提示功能。
相关文档:https://www.elastic.co/guide/en/elasticsearch/reference/7.6/search-suggesters.html#completion-suggester
1.2.1.准备数据
理想中,自动补全功能需要在用户键入一个字符时,尽可能快速的给用户返回提示信息。因此自动补全很注重查询的速度。为了提高suggester的速度,相关的数据必须在内存中缓存起来,数据的类型也不再是普通类型,而是completion类型。
首先我们要定义一个索引库,并设置用于自动补全的字段为completion类型。
1 2 3 4 5 6 7 8 9 10
| PUT articles { "mappings": { "properties": { "suggestion":{ "type": "completion" } } } }
|
创建一个名为articles
的索引库,并且有一个字段为suggestion
,类型是completion
然后批量插入一些数据:
1 2 3 4 5 6 7 8 9 10 11
| POST articles/_bulk { "index" : { } } { "suggestion": ["lucene", "is", "very", "cool"]} { "index" : { } } { "suggestion": ["Elasticsearch", "builds", "on", "lucene"]} { "index" : { } } { "suggestion": ["Elasticsearch", "rocks"]} { "index" : { } } { "suggestion": ["elastic", "is", "the", "company", "behind", "ELK"]} { "index" : { } } { "suggestion": ["Elk", "stack", "rocks"]}
|
在一个文档中,completion类型的字段,其值可以有多个,它的每一个值都可以成为自动补全的推荐结果。
1.2.2.查询推荐值
如果我们要为用户输入的字符补全完整字符,可以向ES发起请求,指定要在哪个completion类型的字段上进行查询,示例:
1 2 3 4 5 6 7 8 9 10 11 12
| POST articles/_search { "suggest": { "article-suggester": { "prefix": "el ", "completion": { "field": "suggestion", "size": 10 } } } }
|
参数说明:
- suggest:代表接下来的查询是一个suggest类型的查询
- article-suggester:这次查询的名称,自定义
- prefix:用来补全的词语前缀,本例中搜索以 el开头的内容
- completion:代表是completion类型的suggest,其它类型还有:Term、Phrase
1.2.3.推荐结果
上面的查询返回结果如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
| { "took" : 0, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 0, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "suggest" : { "article-suggester" : [ { "text" : "el", "offset" : 0, "length" : 2, "options" : [ { "text" : "Elasticsearch", "_index" : "articles", "_type" : "_doc", "_id" : "ZvxiWHABGZL7VTV2dPvC", "_score" : 1.0, "_source" : { "suggestion" : [ "Elasticsearch", "builds", "on", "lucene" ] } }, { "text" : "Elasticsearch", "_index" : "articles", "_type" : "_doc", "_id" : "Z_xiWHABGZL7VTV2dPvC", "_score" : 1.0, "_source" : { "suggestion" : [ "Elasticsearch", "rocks" ] } }, { "text" : "Elk", "_index" : "articles", "_type" : "_doc", "_id" : "afxiWHABGZL7VTV2dPvC", "_score" : 1.0, "_source" : { "suggestion" : [ "Elk", "stack", "rocks" ] } }, { "text" : "elastic", "_index" : "articles", "_type" : "_doc", "_id" : "aPxiWHABGZL7VTV2dPvC", "_score" : 1.0, "_source" : { "suggestion" : [ "elastic", "is", "the", "company", "behind", "ELK" ] } } ] } ] } }
|
返回结果中的options
数组就是推荐的结果,其中text
是推荐的文本,_source
是文档原始数据。
本例中有四条推荐结果:
Elasticsearch
,文档的内容是:”Elasticsearch”, “builds”, “on”, “lucene”Elasticsearch
,文档的内容是:”Elasticsearch”, “rocks”ELK
,文档内容是:”Elk”, “stack”, “rocks”elastic
,文档内容是:”elastic is the company behind ELK stack”
1.3.拼音搜索
拼音搜索的关键是汉字与拼音的转换,只要找到这样的elasticsearch插件就可以了。在GitHub上恰好有这样的拼音插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin
1.3.1.安装拼音插件
首先下载ES版本对应的拼音插件。在GitHub页面中找到releases:https://github.com/medcl/elasticsearch-analysis-pinyin/releases
当然,课前资料提供的也有:
与安装IK分词器一样,把这个拷贝到${ES_HOME}/plugins/
即可。
${ES_HOME}
:elasticsearch的安装目录,如果你使用了Docker安装,请找到你的plugins
挂载的目录
1
| cd /var/lib/docker/volumes/es-plugins/_data
|
我的目录如图:
然后重启你的elasticsearch即可。
1.3.2.测试
在kibana中,输入命令测试:
1 2 3 4 5
| POST _analyze { "text": ["张学友", "刘德华"], "analyzer": "pinyin" }
|
结果:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
| { "tokens" : [ { "token" : "zhang", "start_offset" : 0, "end_offset" : 0, "type" : "word", "position" : 0 }, { "token" : "zxy", "start_offset" : 0, "end_offset" : 0, "type" : "word", "position" : 0 }, { "token" : "xue", "start_offset" : 0, "end_offset" : 0, "type" : "word", "position" : 1 }, { "token" : "you", "start_offset" : 0, "end_offset" : 0, "type" : "word", "position" : 2 }, { "token" : "liu", "start_offset" : 1, "end_offset" : 1, "type" : "word", "position" : 3 }, { "token" : "ldh", "start_offset" : 1, "end_offset" : 1, "type" : "word", "position" : 3 }, { "token" : "de", "start_offset" : 1, "end_offset" : 1, "type" : "word", "position" : 4 }, { "token" : "hua", "start_offset" : 1, "end_offset" : 1, "type" : "word", "position" : 5 } ] }
|
1.3.3.组合分词器
在分词处理时,会用到analyzer,我们以前称它为分词器。但其实它叫分析器,一般包含两部分:
- Tokenizer:分词器,对文本内容分词,得到词条Term
- filter:过滤器,对分好的词条做进一步处理,例如拼音转换、同义词转换等
我们可以把各种下载的分词插件组合,作为tokenizer或者filter,来完成自定义分词效果。
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
| PUT /goods { "settings": { "analysis": { "analyzer": { "my_pinyin": { "tokenizer": "ik_smart", "filter": [ "py" ] } }, "filter": { "py": { "type": "pinyin", "keep_full_pinyin": false, "keep_joined_full_pinyin": true, "keep_original": true, "limit_first_letter_length": 16, "remove_duplicated_term": true } } } }, "mappings": { "properties": { "id": { "type": "keyword" }, "name": { "type": "completion", "analyzer": "my_pinyin", "search_analyzer": "ik_smart" }, "title":{ "type": "text", "analyzer": "my_pinyin", "search_analyzer": "ik_smart" }, "price":{ "type": "long" } } } }
|
说明:
1.3.4.测试自定义分词器
我们在kibana中运行测试,看看分词效果:
1 2 3 4 5
| POST /goods/_analyze { "text": "你好,华为", "analyzer": "my_pinyin" }
|
结果:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
| { "tokens" : [ { "token" : "你好", "start_offset" : 0, "end_offset" : 2, "type" : "CN_WORD", "position" : 0 }, { "token" : "nihao", "start_offset" : 0, "end_offset" : 2, "type" : "CN_WORD", "position" : 0 }, { "token" : "nh", "start_offset" : 0, "end_offset" : 2, "type" : "CN_WORD", "position" : 0 }, { "token" : "华为", "start_offset" : 3, "end_offset" : 5, "type" : "CN_WORD", "position" : 1 }, { "token" : "huawei", "start_offset" : 3, "end_offset" : 5, "type" : "CN_WORD", "position" : 1 }, { "token" : "hw", "start_offset" : 3, "end_offset" : 5, "type" : "CN_WORD", "position" : 1 } ] }
|
1.3.5.测试拼音补全
一旦有了拼音分词器,尽管用户使用拼音,我们也能完成自动补全了。
先插入一部分数据:
1 2 3 4 5 6 7 8 9
| PUT /goods/_bulk { "index" : {"_id":1 } } { "id": 1, "name": "手机","title":"小米手机"} { "index" : {"_id":2 } } {"id": 2,"name": "空调","title":"小米空调"} { "index" : {"_id":3 } } {"id": 3,"name": "sony","title":"sony播放器"} { "index" : {"_id":4 } } {"id": 4,"name": "松下","title":"松下电视"}
|
然后来一个自动补全的查询:
1 2 3 4 5 6 7 8 9 10 11
| POST /goods/_search { "suggest": { "name_suggest": { "prefix": "s", "completion": { "field": "name" } } } }
|
注意,我们输入的关键字是字母:s
看结果:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
| { "took" : 2, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 0, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "suggest" : { "name_suggest" : [ { "text" : "s", "offset" : 0, "length" : 1, "options" : [ { "text" : "sony", "_index" : "goods", "_type" : "_doc", "_id" : "3", "_score" : 1.0, "_source" : { "id" : 3, "name" : "sony", "title" : "sony播放器" } }, { "text" : "手机", "_index" : "goods", "_type" : "_doc", "_id" : "1", "_score" : 1.0, "_source" : { "id" : 1, "name" : "手机", "title" : "小米手机" } }, { "text" : "松下", "_index" : "goods", "_type" : "_doc", "_id" : "4", "_score" : 1.0, "_source" : { "id" : 4, "name" : "松下", "title" : "松下电视" } } ] } ] } }
|
返回的提示包括:sony
、松下
、手机
,都是以s
开头,是不是很酷炫呢!
2.RestAPI
ES提供的Java客户端包括两种:
在elasticsearch官网中提供了各种语言的客户端:https://www.elastic.co/guide/en/elasticsearch/client/index.html
而Java的客户端就有两个:
不过Java API这个客户端(Transport Client)已经在7.0以后过期了,而且在8.0版本中将直接废弃。所以我们会学习Java REST Client:
然后再选择High Level REST Client这个。
2.1.初始化
2.1.1.引入依赖
创建一个新的maven工程,并在pom 文件中引入下列依赖:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
| <dependencies> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.12</version> </dependency> <dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-high-level-client</artifactId> <version>7.4.2</version> </dependency> <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> <version>1.18.8</version> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>1.2.49</version> </dependency> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-lang3</artifactId> <version>3.8.1</version> </dependency> <dependency> <groupId>org.apache.logging.log4j</groupId> <artifactId>log4j-core</artifactId> <version>2.11.2</version> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.2</version> <configuration> <source>1.8</source> <target>1.8</target> <encoding>UTF-8</encoding> </configuration> </plugin> </plugins> </build>
|
并在resources中新建文件:log4j2.xml,内容如下:
1 2 3 4 5 6 7 8 9 10 11 12 13
| <?xml version="1.0" encoding="UTF-8"?> <Configuration status="WARN"> <Appenders> <Console name="Console" target="SYSTEM_OUT"> <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/> </Console> </Appenders> <Loggers> <Root level="error"> <AppenderRef ref="Console"/> </Root> </Loggers> </Configuration>
|
2.1.2.创建ES的客户端
在官网上可以看到连接ES的初始化教程:https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high-getting-started-initialization.html
首先需要与ES建立连接,ES提供了一个客户端RestHighLevelClient。
代码如下:
1 2 3 4 5
| RestHighLevelClient client = new RestHighLevelClient( RestClient.builder( new HttpHost("192.168.206.99", 9200, "http") ) );
|
ES中的所有操作都是通过RestHighLevelClient来完成的:
为了后面测试方便,我们写到一个单元测试中,并且通过@Before
注解来初始化客户端连接。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| public class ElasticDemo {
private RestHighLevelClient client;
@Before public void init() throws IOException { client = new RestHighLevelClient( RestClient.builder( new HttpHost("192.168.206.99", 9200, "http") ) ); }
@After public void close() throws IOException { client.close(); } }
|
2.1.3.准备实体类
索引库的CRUD需要用一个实体类来封装数据,我们准备一个实体类Goods:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
| package cn.itcast.demo.pojo;
import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor;
@AllArgsConstructor @NoArgsConstructor @Data public class Goods { private Long id; private String name; private String title; private Long price; }
|
2.2.创建库和映射
开发中,往往库和映射的操作一起完成,官网详细文档地址:https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.x/_index_apis.html
这里我们主要实现库和映射的创建。查询、删除等功能大家可参考文档自己实现。
2.2.1.思路分析
按照官网给出的步骤,创建索引包括下面几个步骤:
- 1)创建CreateIndexRequest对象,并指定索引库名称
- 2)指定settings配置
- 3)指定mapping配置
- 4)发起请求,得到响应
其实仔细分析,与我们在Kibana中的Rest风格API完全一致:
1 2 3 4 5 6 7 8 9 10
| PUT /heima { "settings": { "number_of_shards": 3, "number_of_replicas": 1 }, "mappings": { } }
|
2.2.2.设计映射规则
Java代码中设置mapping,依然与REST中一致,需要JSON风格的映射规则。因此我们先在kibana中给Goods实体类定义好映射规则。
Goods包括下面的字段:
- Id:主键,在ES中是唯一标示
- name:商品的名称,字符串类型,不需要分词,将来可以用作自动补全功能
- title:商品标题,字符串类型,可以分词
- price:价格,数值类型
映射如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
| PUT /goods { "settings": { "analysis": { "analyzer": { "my_pinyin": { "tokenizer": "ik_smart", "filter": [ "py" ] } }, "filter": { "py": { "type": "pinyin", "keep_full_pinyin": false, "keep_joined_full_pinyin": true, "keep_original": true, "limit_first_letter_length": 16, "remove_duplicated_term": true } } } }, "mappings": { "properties": { "id": { "type": "keyword" }, "name": { "type": "completion", "analyzer": "my_pinyin", "search_analyzer": "ik_smart" }, "title":{ "type": "text", "analyzer": "my_pinyin", "search_analyzer": "ik_smart" }, "price":{ "type": "long" } } } }
|
2.2.3.代码实现
我们在上面新建的ElasticDemo类中新建单元测试,完成代码,思路就是之前分析的4步骤:
- 1)创建CreateIndexRequest对象,并指定索引库名称
- 2)指定settings配置
- 3)指定mapping配置
- 4)发起请求,得到响应
运行之前,不要忘了删除以前的Goods索引库!!
运行之前,不要忘了删除以前的Goods索引库!!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
| @Test public void testCreateIndex() throws IOException { CreateIndexRequest request = new CreateIndexRequest("goods"); request.source("{\n" + " \"settings\": {\n" + " \"analysis\": {\n" + " \"analyzer\": {\n" + " \"my_pinyin\": {\n" + " \"tokenizer\": \"ik_smart\",\n" + " \"filter\": [\n" + " \"py\"\n" + " ]\n" + " }\n" + " },\n" + " \"filter\": {\n" + " \"py\": {\n" + " \"type\": \"pinyin\",\n" + " \"keep_full_pinyin\": false,\n" + " \"keep_joined_full_pinyin\": true,\n" + " \"keep_original\": true,\n" + " \"limit_first_letter_length\": 16,\n" + " \"remove_duplicated_term\": true\n" + " }\n" + " }\n" + " }\n" + " },\n" + " \"mappings\": {\n" + " \"properties\": {\n" + " \"id\": {\n" + " \"type\": \"keyword\"\n" + " },\n" + " \"name\": {\n" + " \"type\": \"completion\",\n" + " \"analyzer\": \"my_pinyin\",\n" + " \"search_analyzer\": \"ik_smart\"\n" + " },\n" + " \"title\":{\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"my_pinyin\",\n" + " \"search_analyzer\": \"ik_smart\"\n" + " },\n" + " \"price\":{\n" + " \"type\": \"long\"\n" + " }\n" + " }\n" + " }\n" + "}", XContentType.JSON); CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT);
System.out.println("response = " + response.isAcknowledged()); }
|
返回结果:
2.3.导入文档数据
示例代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
| @Test public void testBulkDocument() throws IOException { List<Goods> list = new ArrayList<>(); list.add(new Goods(1L, "红米9", "红米9手机 数码", 1499L)); list.add(new Goods(2L, "三星 Galaxy A90", "三星 Galaxy A90 手机 数码 疾速5G 骁龙855", 3099L)); list.add(new Goods(3L, "Sony WH-1000XM3", "Sony WH-1000XM3 降噪耳机 数码", 2299L)); list.add(new Goods(4L, "松下剃须刀", "松下电动剃须刀高转速磁悬浮马达", 599L)); BulkRequest bulkRequest = new BulkRequest(); for (Goods goods : list) { bulkRequest.add(new IndexRequest("goods") .id(goods.getId().toString()) .source(JSON.toJSONString(goods), XContentType.JSON) ); } BulkResponse bulkResponse = client.bulk(bulkRequest, RequestOptions.DEFAULT);
System.out.println("status: " + bulkResponse.status()); }
|
2.4.基本查询
代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
| @Test public void testBasicSearchWithSortAndPage() throws IOException, InvocationTargetException, IllegalAccessException { SearchSourceBuilder sourceBuilder = new SearchSourceBuilder(); sourceBuilder.fetchSource(new String[0], new String[]{"name"}); BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); boolQueryBuilder.must(QueryBuilders.matchQuery("title", "数码")); boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").lte(3000)); sourceBuilder.query(boolQueryBuilder); sourceBuilder.sort("price", SortOrder.ASC); int page = 1, size = 5; int from = (page - 1) * size; sourceBuilder.from(from); sourceBuilder.size(size); sourceBuilder.highlighter(new HighlightBuilder().field("title"));
SearchRequest request = new SearchRequest("goods"); request.source(sourceBuilder);
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
SearchHits searchHits = response.getHits(); long total = searchHits.getTotalHits().value; System.out.println("total = " + total); SearchHit[] hits = searchHits.getHits(); for (SearchHit hit : hits) { String json = hit.getSourceAsString(); Goods goods = JSON.parseObject(json, Goods.class);
Map<String, HighlightField> highlightFields = hit.getHighlightFields(); for (HighlightField field : highlightFields.values()) { String fieldName = field.getName(); String fieldValue = StringUtils.join(field.getFragments()); BeanUtils.setProperty(goods, fieldName, fieldValue); }
System.out.println("goods = " + goods); } }
|
其中的 BeanUtils用到了一个依赖:
1 2 3 4 5
| <dependency> <groupId>commons-beanutils</groupId> <artifactId>commons-beanutils</artifactId> <version>1.9.3</version> </dependency>
|
2.5.Suggest查询
这里以Completion Suggest查询为例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
@Test public void testSuggest() throws IOException { SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
SuggestBuilder suggestBuilder = new SuggestBuilder(); suggestBuilder.addSuggestion("name_suggest", SuggestBuilders.completionSuggestion("name").prefix("s").size(30));
searchSourceBuilder.suggest(suggestBuilder);
SearchRequest request = new SearchRequest("goods"); request.source(searchSourceBuilder);
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
Suggest suggest = response.getSuggest();
Suggest.Suggestion<? extends Suggest.Suggestion.Entry<? extends Suggest.Suggestion.Entry.Option>> nameSuggest = suggest.getSuggestion("name_suggest"); nameSuggest.forEach(suggestion -> { List<? extends Suggest.Suggestion.Entry.Option> options = suggestion.getOptions(); System.out.println("补全的结果如下: "); for (Suggest.Suggestion.Entry.Option option : options) { Text text = option.getText(); System.out.println("\t" + text); } }); }
|
结果:
2.6.异步API
之前我们使用的API都是同步阻塞调用的,也就是说调用api时,除非ES返回结果,否则代码就一直阻塞。
当然,ES也提供了异步调用的API,利用回调函数来处理执行结果。其底层是异步的Http请求,并且将执行结果用Future<T>
来封装。
因此我们在发出请求后,无需等待结果,而是去执行其它业务。当ES服务端返回结果时再去处理,可以提高CPU的利用率,减少不必要的等待时间。
异步API与同步API从调用来看,最大的区别是对结果的处理方式。其它如:创建请求、组织请求参数、发出请求等基本一致。
2.6.1.异步新增
代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
| @Test public void testAsyncAddDocument() throws InterruptedException { Goods goods = new Goods(5L, "松下电吹风", "松下电吹风 网红电吹风", 1599L);
IndexRequest request = new IndexRequest("goods") .id(goods.getId().toString()) .source(JSON.toJSONString(goods), XContentType.JSON);
client.indexAsync(request, RequestOptions.DEFAULT, new ActionListener<IndexResponse>() {
@Override public void onResponse(IndexResponse indexResponse) { System.out.println("我是成功的回调!" + indexResponse); }
@Override public void onFailure(Exception e) { System.out.println("我是失败的回调!"); e.printStackTrace(); } });
System.out.println("我的异步方法调用完成~~"); Thread.sleep(2000L); }
|
结果:
1 2
| 我的异步方法调用完成~~ 我是成功的回调!IndexResponse[index=goods,type=_doc,id=5,version=1,result=created,seqNo=29,primaryTerm=1,shards={"total":2,"successful":1,"failed":0}]
|
2.6.2.异步删除
代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
| @Test public void testAsyncDeleteDocument() throws InterruptedException { DeleteRequest request = new DeleteRequest("goods", "5");
client.deleteAsync(request, RequestOptions.DEFAULT, new ActionListener<DeleteResponse>() {
@Override public void onResponse(DeleteResponse indexResponse) { System.out.println("我是成功的回调!" + indexResponse); }
@Override public void onFailure(Exception e) { System.out.println("我是失败的回调!"); e.printStackTrace(); } });
System.out.println("我的异步方法调用完成~~"); Thread.sleep(2000L); }
|
执行结果:
1 2
| 我的异步方法调用完成~~ 我是成功的回调!DeleteResponse[index=goods,type=_doc,id=5,version=1,result=not_found,shards=ShardInfo{total=2, successful=1, failures=[]}]
|
2.6.3.异步查询
这里演示一个异步的模板查询:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
| @Test public void testGetDocumentByIdAsync() throws IOException, InterruptedException {
System.out.println("准备开始查询"); GetRequest request = new GetRequest("goods", "1"); client.getAsync(request, RequestOptions.DEFAULT, new ActionListener<GetResponse>() { @Override public void onResponse(GetResponse response) { String json = response.getSourceAsString(); Goods goods = JSON.parseObject(json, Goods.class);
System.out.println("查询结束,得到结果: " + goods); }
@Override public void onFailure(Exception e) { e.printStackTrace(); } });
System.out.println("请求已经发出,等待执行结果!");
Thread.sleep(2000); }
|
执行结果:
1 2 3 4 5 6
| 我的异步方法调用完成~~ 我是成功的回调! 推荐结果如下: Sony WH-1000XM3 三星 Galaxy A90 松下剃须刀
|