xxl-job分布式任务调度
xxl-Job分布式任务调度
1.概述
1.1 什么是任务调度
我们可以先思考一下业务场景的解决方案:
- 某电商系统需要在每天上午10点,下午3点,晚上8点发放一批优惠券。
- 某银行系统需要在信用卡到期还款日的前三天进行短信提醒。
- 某财务系统需要在每天凌晨0:10结算前一天的财务数据,统计汇总。
- 12306会根据车次的不同,设置某几个时间点进行分批放票。
以上业务场景的解决方案就是任务调度。
任务调度是指系统为了自动完成特定任务,在约定的特定时刻去执行任务的过程。有了任务调度即可解放更多的人力,而是由系统自动去执行任务。
如何实现任务调度?
- 多线程方式,结合sleep
- JDK提供的API,例如:Timer、ScheduledExecutor
- 框架,例如Quartz ,它是一个功能强大的任务调度框架,可以满足更多更复杂的调度需求
- spring task
入门案例
spring框架中默认就支持了一个任务调度,springtask
(1)创建一个工程:springtask-test
pom文件
1 | <dependencies> |
(2)引导类:
1 | package com.itheima.task; |
(3)编写案例
1 | package com.itheima.task.job; |
测试:启动项目,每隔5秒中会执行一次eat方法
- 集群状态下各个服务都会执行当前任务
1.2 cron表达式
cron表达式是一个字符串, 用来设置定时规则, 由七部分组成, 每部分中间用空格隔开, 每部分的含义如下表所示:
组成部分 | 含义 | 取值范围 |
---|---|---|
第一部分 | Seconds (秒) | 0-59 |
第二部分 | Minutes(分) | 0-59 |
第三部分 | Hours(时) | 0-23 |
第四部分 | Day-of-Month(天) | 1-31 |
第五部分 | Month(月) | 0-11或JAN-DEC |
第六部分 | Day-of-Week(星期) | 1-7(1表示星期日)或SUN-SAT |
第七部分 | Year(年) 可选 | 1970-2099 |
另外, cron表达式还可以包含一些特殊符号来设置更加灵活的定时规则, 如下表所示:
符号 | 含义 |
---|---|
? | 表示不确定的值。当两个子表达式其中一个被指定了值以后,为了避免冲突,需要将另外一个的值设为“?”。例如:想在每月20日触发调度,不管20号是星期几,只能用如下写法:0 0 0 20 * ?,其中最后以为只能用“?” |
* | 代表所有可能的值 |
, | 设置多个值,例如”26,29,33”表示在26分,29分和33分各自运行一次任务 |
- | 设置取值范围,例如”5-20”,表示从5分到20分钟每分钟运行一次任务 |
/ | 设置频率或间隔,如”1/15”表示从1分开始,每隔15分钟运行一次任务 |
L | 用于每月,或每周,表示每月的最后一天,或每个月的最后星期几,例如”6L”表示”每月的最后一个星期五” |
W | 表示离给定日期最近的工作日,例如”15W”放在每月(day-of-month)上表示”离本月15日最近的工作日” |
# | 表示该月第几个周X。例如”6#3”表示该月第3个周五 |
为了让大家更熟悉cron表达式的用法, 接下来我们给大家列举了一些例子, 如下表所示:
cron表达式 | 含义 |
---|---|
*/5 * * * * ? | 每隔5秒运行一次任务 |
0 0 23 * * ? | 每天23点运行一次任务 |
0 0 1 1 * ? | 每月1号凌晨1点运行一次任务 |
0 0 23 L * ? | 每月最后一天23点运行一次任务 |
0 26,29,33 * * * ? | 在26分、29分、33分运行一次任务 |
0 0/30 9-17 * * ? | 朝九晚五工作时间内每半小时运行一次任务 |
0 15 10 ? * 6#3 | 每月的第三个星期五上午10:15运行一次任务 |
1.3 什么是分布式任务调度
当前软件的架构已经开始向分布式架构转变,将单体结构拆分为若干服务,服务之间通过网络交互来完成业务处理。在分布式架构下,一个服务往往会部署多个实例来运行我们的业务,如果在这种分布式系统环境下运行任务调度,我们称之为分布式任务调度。
将任务调度程序分布式构建,这样就可以具有分布式系统的特点,并且提高任务的调度处理能力:
1、并行任务调度
并行任务调度实现靠多线程,如果有大量任务需要调度,此时光靠多线程就会有瓶颈了,因为一台计算机CPU的处理能力是有限的。
如果将任务调度程序分布式部署,每个结点还可以部署为集群,这样就可以让多台计算机共同去完成任务调度,我们可以将任务分割为若干个分片,由不同的实例并行执行,来提高任务调度的处理效率。
2、高可用
若某一个实例宕机,不影响其他实例来执行任务。
3、弹性扩容
当集群中增加实例就可以提高并执行任务的处理效率。
4、任务管理与监测
对系统中存在的所有定时任务进行统一的管理及监测。让开发人员及运维人员能够时刻了解任务执行情况,从而做出快速的应急处理响应。
分布式任务调度面临的问题:
当任务调度以集群方式部署,同一个任务调度可能会执行多次,例如:电商系统定期发放优惠券,就可能重复发放优惠券,对公司造成损失,信用卡还款提醒就会重复执行多次,给用户造成烦恼,所以我们需要控制相同的任务在多个运行实例上只执行一次。常见解决方案:
- 分布式锁,多个实例在任务执行前首先需要获取锁,如果获取失败那么就证明有其他服务已经在运行,如果获取成功那么证明没有服务在运行定时任务,那么就可以执行。
- ZooKeeper选举,利用ZooKeeper对Leader实例执行定时任务,执行定时任务的时候判断自己是否是Leader,如果不是则不执行,如果是则执行业务逻辑,这样也能达到目的。
1.4 xxl-Job简介
针对分布式任务调度的需求,市场上出现了很多的产品:
1) TBSchedule:淘宝推出的一款非常优秀的高性能分布式调度框架,目前被应用于阿里、京东、支付宝、国美等很多互联网企业的流程调度系统中。但是已经多年未更新,文档缺失严重,缺少维护。
2) XXL-Job:大众点评的分布式任务调度平台,是一个轻量级分布式任务调度平台, 其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
3)Elastic-job:当当网借鉴TBSchedule并基于quartz 二次开发的弹性分布式任务调度系统,功能丰富强大,采用zookeeper实现分布式协调,具有任务高可用以及分片功能。
4)Saturn: 唯品会开源的一个分布式任务调度平台,基于Elastic-job,可以全域统一配置,统一监
控,具有任务高可用以及分片功能。
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
源码地址:https://gitee.com/xuxueli0323/xxl-job
文档地址:https://www.xuxueli.com/xxl-job/
特性
- 简单灵活
提供Web页面对任务进行管理,管理系统支持用户管理、权限控制;
支持容器部署;
支持通过通用HTTP提供跨平台任务调度; - 丰富的任务管理功能
支持页面对任务CRUD操作;
支持在页面编写脚本任务、命令行任务、Java代码任务并执行;
支持任务级联编排,父任务执行结束后触发子任务执行;
支持设置指定任务执行节点路由策略,包括轮询、随机、广播、故障转移、忙碌转移等;
支持Cron方式、任务依赖、调度中心API接口方式触发任务执行 - 高性能
任务调度流程全异步化设计实现,如异步调度、异步运行、异步回调等,有效对密集调度进行流量削峰; - 高可用
任务调度中心、任务执行节点均 集群部署,支持动态扩展、故障转移
支持任务配置路由故障转移策略,执行器节点不可用是自动转移到其他节点执行
支持任务超时控制、失败重试配置
支持任务处理阻塞策略:调度当任务执行节点忙碌时来不及执行任务的处理策略,包括:串行、抛弃、覆盖策略 - 易于监控运维
支持设置任务失败邮件告警,预留接口支持短信、钉钉告警;
支持实时查看任务执行运行数据统计图表、任务进度监控数据、任务完整执行日志;
2.XXL-Job
在分布式架构下,通过XXL-Job实现定时任务
调度中心:负责管理调度信息,按照调度配置发出调度请求,自身不承担业务代码。
任务执行器:负责接收调度请求并执行任务逻辑。
任务:专注于任务的处理。
调度中心会发出调度请求,任务执行器接收到请求之后会去执行任务,任务则专注于任务业务的处理。
2.1 环境搭建(可选)
2.1.1 调度中心环境要求
- Maven3+
- Jdk1.8+
- Mysql5.7+
2.1.2 源码仓库地址
源码仓库地址 | Release Download |
---|---|
https://github.com/xuxueli/xxl-job | Download |
http://gitee.com/xuxueli0323/xxl-job | Download |
也可以使用资料文件夹中的源码
2.1.3 初始化“调度数据库”
请下载项目源码并解压,获取 “调度数据库初始化SQL脚本” 并执行即可。
位置:/xxl-job/doc/db/tables_xxl_job.sql
共8张表
1 | - xxl_job_lock:任务调度锁表; |
调度中心支持集群部署,集群情况下各节点务必连接同一个mysql实例;
如果mysql做主从,调度中心集群节点务必强制走主库;
2.1.4 编译源码(可不做)
解压源码,按照maven格式将源码导入IDE, 使用maven进行编译即可,源码结构如下:
安装到本地仓库:mvn clean -DskipTests install
2.1.5 配置部署“调度中心”
调度中心项目:xxl-job-admin
作用:统一管理任务调度平台上调度任务,负责触发调度执行,并且提供任务管理平台。
步骤一:调度中心配置
调度中心配置文件地址:/xxl-job/xxl-job-admin/src/main/resources/application.properties
数据库的连接信息修改为自己的数据库
1 | ### web |
步骤二:部署项目
如果已经正确进行上述配置,可将项目编译打包部署。
启动方式一:这是一个springboot项目,可以在idea中直接启动,不推荐使用
启动方式二:
- 执行maven打包命令:package
- 打完包以后,从项目的target目录中找到jar包拷贝到不带空格和中文的目录下
- 执行以下命令,启动项目
1 | java -jar xxl-job-admin-2.2.0-SNAPSHOT.jar |
调度中心访问地址:http://localhost:8888/xxl-job-admin (该地址执行器将会使用到,作为回调地址)
启动方式三:docker部署微服务
初始化数据库
位置:
/xxl-job/doc/db/tables_xxl_job.sql
共8张表创建容器
1
docker run -e PARAMS="--spring.datasource.url=jdbc:mysql://192.168.200.129:3306/xxl_job?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&serverTimezone=Asia/Shanghai --spring.datasource.username=root --spring.datasource.password=root" -p 8888:8080 -v /tmp:/data/applogs --name xxl-job-admin --privileged=true -id xuxueli/xxl-job-admin:2.2.0
默认登录账号 “admin/123456”, 登录后运行界面如下图所示。
至此“调度中心”项目已经部署成功。
2.2 入门案例编写
2.2.1 配置执行器
在任务调度中心,点击进入”执行器管理”界面, 如下图:
1、此处的AppName,会在创建任务时被选择,每个任务必然要选择一个执行器。
2、”执行器列表” 中显示在线的执行器列表, 支持编辑删除。
以下是执行器的属性说明:
属性名称 | 说明 |
---|---|
AppName | 是每个执行器集群的唯一标示AppName, 执行器会周期性以AppName为对象进行自动注册。可通过该配置自动发现注册成功的执行器, 供任务调度时使用; |
名称 | 执行器的名称, 因为AppName限制字母数字等组成,可读性不强, 名称为了提高执行器的可读性; |
排序 | 执行器的排序, 系统中需要执行器的地方,如任务新增, 将会按照该排序读取可用的执行器列表; |
注册方式 | 调度中心获取执行器地址的方式; |
机器地址 | 注册方式为”手动录入”时有效,支持人工维护执行器的地址信息; |
具体操作:
(1)新增执行器:
(2)自动注册和手动注册的区别和配置
2.2.2 在调度中心新建任务
在任务管理->新建,填写以下内容
执行器:任务的绑定的执行器,任务触发调度时将会自动发现注册成功的执行器, 实现任务自动发现功能; 另一方面也可以方便的进行任务分组。每个任务必须绑定一个执行器, 可在 “执行器管理” 进行设置
任务描述:任务的描述信息,便于任务管理
路由策略:当执行器集群部署时,提供丰富的路由策略,包括
FIRST(第一个):固定选择第一个机器;
LAST(最后一个):固定选择最后一个机器;
ROUND(轮询):
RANDOM(随机):随机选择在线的机器;
CONSISTENT_HASH(一致性HASH):每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。
LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举;
LEAST_RECENTLY_USED(最近最久未使用):最久为使用的机器优先被选举;
FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度;
BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度;
SHARDING_BROADCAST(分片广播):广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;
Cron:触发任务执行的Cron表达式;
运行模式:
BEAN模式:任务以JobHandler方式维护在执行器端;需要结合 “JobHandler” 属性匹配执行器中任务;
GLUE模式(Java):任务以源码方式维护在调度中心;该模式的任务实际上是一段继承自IJobHandler的Java类代码并 “groovy” 源码方式维护,它在执行器项目中运行,可使用@Resource/@Autowire注入执行器里中的其他服务;
GLUE模式(Shell):任务以源码方式维护在调度中心;该模式的任务实际上是一段 “shell” 脚本;
GLUE模式(Python):任务以源码方式维护在调度中心;该模式的任务实际上是一段 “python” 脚本;
GLUE模式(PHP):任务以源码方式维护在调度中心;该模式的任务实际上是一段 “php” 脚本;
GLUE模式(NodeJS):任务以源码方式维护在调度中心;该模式的任务实际上是一段 “nodejs” 脚本;
GLUE模式(PowerShell):任务以源码方式维护在调度中心;该模式的任务实际上是一段 “PowerShell” 脚本;
JobHandler:运行模式为 “BEAN模式” 时生效,对应执行器中新开发的JobHandler类“@JobHandler”注解自定义的value值;
阻塞处理策略:调度过于密集执行器来不及处理时的处理策略;
单机串行(默认):调度请求进入单机执行器后,调度请求进入FIFO队列并以串行方式运行;
丢弃后续调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,本次请求将会被丢弃并标记为失败;
覆盖之前调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,将会终止运行中的调度任务并清空队列,然后运行本地调度任务;
子任务:每个任务都拥有一个唯一的任务ID(任务ID可以从任务列表获取),当本任务执行结束并且执行成功时,将会触发子任务ID所对应的任务的一次主动调度。
任务超时时间:支持自定义任务超时时间,任务运行超时将会主动中断任务;
失败重试次数;支持自定义任务失败重试次数,当任务失败时将会按照预设的失败重试次数主动进行重试;
报警邮件:任务调度失败时邮件通知的邮箱地址,支持配置多邮箱地址,配置多个邮箱地址时用逗号分隔;
负责人:任务的负责人;
执行参数:任务执行所需的参数;
2.2.3 搭建springboot项目
新建项目:xxljob-test
(1)pom文件
1 | <dependencies> |
注意:如果项目中没有找到xxl-job-core
这个依赖,需要把这个依赖安装到本地的maven仓库
或者直接进入源码包目录下执行:mvn clean -DskipTests install
(2)配置有两个,一个是application.properties,另外一个是日志配置:logback.xml
application.properties
1 | # web port |
logback.xml
1 |
|
(3)引导类:
1 | package com.itheima.xxljob; |
2.2.4 添加xxl-job配置
添加配置类:
这个类主要是创建了任务执行器,参考官方案例编写,无须改动
1 | package com.itheima.xxljob.config; |
2.2.5 创建任务
1 | package com.itheima.xxljob.job; |
@XxlJob("helloJob")
这个一定要与调度中心新建任务的JobHandler的值保持一致,如下图:
2.2.6 测试
(1)首先启动调度中心
(2)启动xxljob-test项目,为了展示更好的效果,可以同时启动三个项目,用同一个JobHandler,查看处理方式。
在启动多个项目的时候,端口需要切换,连接xxl-job的执行器端口不同相同
服务一:默认启动8801端口,执行器端口为9999
idea中不用其他配置,直接启动项目即可
服务二:项目端口:8802,执行器端口:9998
idea配置如下:
- 编辑配置,Edit Configurations…
- 选中XxlJobApplication,点击复制
- 修改参数
- 启动:选中8802启动项目
服务三:项目端口:8803,执行器端口:9997
(3)测试效果
三个项目启动后,可以查看到是轮询的方式分别去执行当前调度任务。
2.3 广播任务和动态分片
2.3.1 什么是作业分片
作业分片是指任务的分布式执行,需要将一个任务拆分为多个独立的任务项,然后由分布式的应用实例
分别执行某一个或几个分片项。
2.3.2 XXL-JOB分片
执行器集群部署时,任务路由策略选择”分片广播”情况下,一次任务调度将会广播触发对应集群中所有执行器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;
“分片广播” 以执行器为维度进行分片,支持动态扩容执行器集群从而动态增加分片数量,协同进行业务处理;在进行大数据量业务操作时可显著提升任务处理能力和速度。
“分片广播” 和普通任务开发流程一致,不同之处在于可以获取分片参数,获取分片参数进行分片业务处理。
2.3.3 XXL-JOB支持分片的好处
- 分片项与业务处理解耦
XXL-JOB并不直接提供数据处理的功能,框架只会将分片项分配至各个运行中的作业服务器,开发者需
要自行处理分片项与真实数据的对应关系。 - 最大限度利用资源
基于业务需求配置合理数量的执行器服务,合理设置分片,作业将会最大限度合理的利用分布式资源。
2.3.4 适用场景
- 分片任务场景:10个执行器的集群来处理10w条数据,每台机器只需要处理1w条数据,耗时降低10倍;
- 广播任务场景:广播执行器机器运行shell脚本、广播集群节点进行缓存更新等
2.3.5 分片广播案例演示
目标:实现XXL-JOB作业分片的演示
方案分析:规划一个任务,两个分片,对应两个执行器,每个分片处理一部分任务。
实现步骤:
创建分片执行器
创建任务
指定刚才创建的分片执行器,在路由策略这一栏选择分片广播
分片广播代码
分片参数属性说明:
index:当前分片序号(从0开始),执行器集群列表中当前执行器的序号;
total:总分片数,执行器集群的总机器数量;
目前有一万条数据,使用两个分片同时执行
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27/**
* 2、分片广播任务
*/
public ReturnT<String> shardingJobHandler(String param) throws Exception {
// 分片参数
ShardingUtil.ShardingVO shardingVO = ShardingUtil.getShardingVo();
XxlJobLogger.log("分片参数:当前分片序号 = {}, 总分片数 = {}", shardingVO.getIndex(), shardingVO.getTotal());
List<Integer> list = getList();
for (Integer integer : list) {
if(integer % shardingVO.getTotal() == shardingVO.getIndex()){
System.out.println("第"+shardingVO.getIndex()+"分片执行,执行数据为:"+integer);
}
}
return ReturnT.SUCCESS;
}
public static List<Integer> getList(){
List<Integer> list = new ArrayList<>();
for (int i = 0; i < 10000 ; i++) {
list.add(i);
}
return list;
}
结论:
- 如果没有设定分片的执行逻辑,默认情况下是广播形式执行,即集群中的每一个节点都会执行任务
- 如果设定了分片执行逻辑,则会把任务划分到执行器的集群中执行